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Motivation

• The Goal – Understand how Precipitation 
Frequency estimates across North America 
(NA) will change as the climate changes.

• Extreme precipitation associated with weather 
fronts is the dominant contributor over most 
of North America.

• We need to understand how weather front 
behavior will change as the climate changes.

• Automated front detection will be required.
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The Problem Space

• Weather front detection is still a manual 
process.

• Visual recognition problems are often good 
candidates for Neural Network solutions.

• A ”supervised learning” neural network 
approach requires truth data.
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Training Data

• We used NASA Modern-Era Retrospective 
analysis for Research and Applications, Version 
2 (MERRA-2) with data from 1980-2018 for 
our inputs. We used pressure difference from 
a moving 30-day mean, near-surface air 
temperature, specific humidity, and vector 
wind velocity.

• Used the Coded Surface Bulletin (CSB) 
digitized front polyline dataset with data from 
2003-2018 for our labels to train against.
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Training Data

• Used a 1x1° data grid centered over North 
America (10–70N x 171–31W).

• Converted the CSB polylines to gridded maps 
with lines drawn 3 grid cells wide.

• CSB data grid layers:

– Cold fronts

– Warm fronts

– Stationary fronts

– Occluded fronts

– No front
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Neural Networks

• Neural networks are composed of simplistic 
analogs of biological neurons organized in 
layers.

• Here is the basic structure of a machine 
learning neuron.

𝑂 = 𝑓 𝑏 + ෍

𝑖

𝑤𝑖 𝐼𝑖

• A non-linear function of a linear 
superposition of a set of input values.
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Neural Networks
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Neural Networks

• A neural network is formed by building layers 
where the outputs from one set of neurons 
are used as inputs to another set.
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Neural Networks

• In the 1960s, mathematicians proved that any 
complex function of multiple inputs can be 
decomposed into a combination of linear 
superpositions and simple non-linear 
functions applied to the inputs.

• This is, in essence, a neural network with one 
interior (hidden) layer.

• The problem is finding the appropriate 
functions and weights!
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Neural Networks

• In supervised machine learning, the weights 
are found through hyper-dimensional gradient 
descent.

– Produce outputs for a number of inputs with a 
network initialized with random weights and 
biases.

– Use the discrepancy between network outputs 
and “truth” outputs to update the weights and 
biases to minimize the difference.

– Repeat many times.
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Neural Networks

• Finding a good network design for your 
problem is an art.

• Take care, because it is possible to memorize 
the right answer for each input rather than 
learn the underlying functional relationships 
(overfitting).
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Network Design
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Training

• Trained with data from 2008-2012.

• Randomly selected ¼ of the possible 17x17 
grid cell input patches while also ensuring that 
there were twice as many “no front” patches 
as “front” patches.

• Limited training and testing to region around 
CONUS where the rate of front crossings was 
40/year or better.

• Training took ~3 days on a NERSC GPU node.
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Training
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Training Results
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Training Results

CSB Labels 2003 - 2018

Cold Warm Stationary Occluded None Total

Counts 8,551,914 4,631,517 12,797,269 3,893,614 182,795,286 212,669,600

Percent 4.02% 2.18% 6.02% 1.83% 85.95%

MERRA-2 Predictions 2003 - 2018

Cold Warm Stationary Occluded None Total

Counts 8,950,546 2,785,315 10,867,527 4,098,013 185,968,199 212,669,600

Percent 4.21% 1.31% 5.11% 1.93% 87.44%
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Training Results

Confusion Matrix

2008-2015

Predicted

Cold Warm Stationary Occluded None

Cold
4,118,370 166,264 754,909 231,514 3,280,857 

Warm
214,405 1,104,025 743,101 300,147 2,269,839 

Actual Stationary
990,596 244,167 4,464,480 127,063 6,970,963 

Occluded
194,304 128,904 201,375 1,643,822 1,725,209 

None
3,432,871 1,141,955 4,703,662 1,795,467 171,721,331 
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Training Results

Front/No-Front Confusion Matrix

2003-2018

Predicted

Front None

Actual

Front
15,627,446 14,246,868 

None
11,073,955 171,721,331 
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Training Results
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Training Results
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Training Results

• The performance of the network may be 
better than the metrics suggest.

• It may be more conservative about drawing 
weak fronts.

• Slight geographic offsets count as misses.

• Differences in type of front count as misses.
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Front Climatologies

• Goal of the front detection work was to 
develop front climatologies.

• Decided to measure the rate at which fronts 
of each type crossed each 1°x1 ° grid cell.

• Also measured the rate at which fronts of any 
type crossed each cell.

• Calculated climatologies for CSB and for 
MERRA-2 network outputs.
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Front Climatologies

• For MERRA-2, extracted polylines from the 
front probability data grids produced by the 
network.

• Produced hard-edged 3-cell-wide data grids 
on 3-hourly time steps.

• Stacked the data grids to produce a “front 
event” time series for each front type for each 
grid cell.
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Front Climatologies

• Filtered each time series by removing the 
front events that were within 24 hours after 
each initial event to prevent overcounting. 

• Produced front-crossing rates by month and 
season from the counts.

• Averaged the rates by month and season over 
years to produce monthly and seasonal front 
crossing rate climatologies.
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MERRA-2 vs CSB Climatology

• Produced climatologies as described for 
MERRA-2 network outputs.

• Produced climatologies the same way for the 
CSB dataset.

• Used the 2003-2018 overlapping time frame 
for each.

• Also averaged the results over a CONUS-
centered region spanning 20N – 50N, 125W –
65W.
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MERRA-2 vs CSB Climatology
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MERRA-2 vs CSB Climatology
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MERRA-2 vs CSB Climatology
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Conclusions

• The network appears to perform well.

• Hard to determine if further training is 
warranted.

• Need to try different network architectures.
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Questions?

Support for this project was provided by the U.S. 
Department of Defense Strategic Environmental 
Research and Development Program Contract # 
W912HQ 15-C-0010 


